Modeling of the Soot Oxidation in Gasoline Particulate Filters

Paper #:
  • 2015-01-1048

Published:
  • 2015-04-14
DOI:
  • 10.4271/2015-01-1048
Citation:
Nicolin, P., Rose, D., Kunath, F., and Boger, T., "Modeling of the Soot Oxidation in Gasoline Particulate Filters," SAE Int. J. Engines 8(3):1253-1260, 2015, doi:10.4271/2015-01-1048.
Pages:
8
Abstract:
The share of gasoline engines based on direct injection (DI) technology is rapidly growing, to a large extend driven by their improved efficiency and potential to lower CO2 emissions. One downside of these advanced engines are their significantly higher particulate emissions compared to engines based on port fuel injection technologies [1]. Gasoline particulate filters (GPF) are one potential technology path to address the EU6 particulate number regulation for vehicles powered by gasoline DI engines. For the robust design and operation of GPFs it is essential to understand the mechanisms of soot accumulation and oxidation under typical operating conditions.In this paper we will first discuss the use of detailed numerical simulation to describe the soot oxidation in particulate filters under typical gasoline engine operating conditions. Laboratory experiments are used to establish a robust set of soot oxidation kinetics. The filter model and oxidation kinetics are validated using a large set of experimental data from laboratory reactor as well as vehicle experiments. With the validated model and parameters the impact of key operating parameters will be discussed, with special focus on passive soot oxidation mechanisms under normal vehicle operating conditions. Results show that short oxygen pulses during fuel cuts are the dominant passive regeneration mechanism. Results also provide insight into potential “worst case” conditions. Based on the insight from the detailed model a reduced 0D model is developed and described, which could be used for real time soot estimation.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2004-11-16
Training / Education
2005-02-03