Browse Publications Technical Papers 2015-01-1049
2015-04-14

Combining the Classical and Lumped Diesel Particulate Filter Models 2015-01-1049

The growing presence of Spark Ignition Direct Injection (SIDI) engines along with the prevalence of direct injected Compression Ignition (CI) engines results in the requirement of Particulate Matter (PM) exhaust abatement. This occurs through the implementation of Gasoline Particulate Filters (GPFs) and Diesel Particulate Filters (DPFs). Modeling of GPFs and DPFs are analogous because of the similar flow patterns and wall flow PM capture methodology. Conventional modeling techniques include a two-channel (inlet/outlet) formulation that is applicable up to three-dimensions. However, the numerical stiffness that results from the need to couple the solution of these channels in compressible flow can result in relatively long run times. Previously, the author presented a lumped DPF model using dynamically incompressible flow intended for an Engine Control Unit (ECU) in order to generate a model that runs faster than real time using a high-level programming language. Building on the favorable outcomes of temperature evolution from this prior effort, this work enhances the model to predict compressible flow gas dynamics in order to match the evolution of pressure drop. Another enhancement is the inclusion of deep bed filtration within the wall, and the transition to the cake layer. Results show comparable temperature profiles with the dynamically incompressible model with a pressure drop that follows appropriately by linking through the ideal gas model. However, solving chemical species as an independent equation separate from compressible flow still deviates significantly from the classical two-channel approach.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Numerical Analysis of Urea-SCR Sprays under Cross-Flow Conditions

2017-01-0964

View Details

TECHNICAL PAPER

Design Optimization of Wall Flow Type Catalyzed Cordierite Particulate Filter for Heavy Duty Diesel

2005-01-0666

View Details

TECHNICAL PAPER

An Advanced 1D 2-Layer Catalyzed Diesel Particulate Filter Model to Simulate: Filtration by the Wall and Particulate Cake, Oxidation in the Wall and Particulate Cake by NO2 and O2, and Regeneration by Heat Addition

2006-01-0467

View Details

X