Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach

Paper #:
  • 2015-01-1184

Published:
  • 2015-04-14
Citation:
Panchal, S., Mathewson, S., Fraser, R., Culham, R. et al., "Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach," SAE Int. J. Alt. Power. 4(2):293-307, 2015, https://doi.org/10.4271/2015-01-1184.
Pages:
15
Abstract:
The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C. In the second part of the research, the total heat generation from a particular battery is obtained under different discharge rates (1C, 2C, 3C, and 4C) and different boundary conditions (cooling bath temperature of 5°C, 15°C, 25°C, and 35°C). In the third part of the research, the heat flux profile is studied at three different locations on the top surface of the pouch cell (first, near the cathode; second, near the anode; and third, at the center of the cell along the height of the cell) using heat flux sensors. In the fourth part of the research, thermal images from a lithium-ion pouch cell are obtained at different discharge rates to qualitatively evaluate the thermal behaviour and temperature distribution. A “FLIR System” Therma CAM model S60 IR camera is used to obtain thermal images.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
2014-01-06
Technical Paper / Journal Article
2010-04-12
Technical Paper / Journal Article
2010-10-25