Browse Publications Technical Papers 2015-01-1516
2015-04-14

Prediction of Component Failure using ‘Progressive Damage and Failure Model’ and Its Application in Automotive Wheel Design 2015-01-1516

Damages (fracture) in metals are caused by material degradation due to crack initiation and growth due to fatigue or dynamic loadings. The accurate and realistic modeling of an inelastic behavior of metals is essential for the solution of various problems occurring in engineering fields. Currently, various theories and failure models are available to predict the damage initiation and the growth in metals. In this paper, the failure of aluminum alloy is studied using progressive damage and failure material model using Abaqus explicit solver. This material model has the capability to predict the damage initiation due to the ductile and shear failure. After damage initiation, the material stiffness is degraded progressively according to the specified damage evolution response. The progressive damage models allow a smooth degradation of the material stiffness, in both quasi-static and dynamic situations. Further in this paper, the material model is validated for tensile and shear failure using standard specimens. Then the validated material model is used in the damage prediction of the aluminum wheel due to compression load and good correlation is achieved within 5% of deviation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimizing Designs of Aluminum Suspension Components Using an Integrated Approach

2005-01-1387

View Details

TECHNICAL PAPER

Rim Section Fatigue Results of Aluminum and Steel Wheels

820341

View Details

TECHNICAL PAPER

Hot-Rolled 590 MPa Tensile Strength Dual Phase Steel For Structural Automotive Components

2004-01-0504

View Details

X