Sequential Model for Residual Affected HCCI with Variable Valve Timing

Paper #:
  • 2015-01-1748

Published:
  • 2015-04-14
DOI:
  • 10.4271/2015-01-1748
Citation:
Saigaonkar, H., Nazemi, M., and Shahbakhti, M., "Sequential Model for Residual Affected HCCI with Variable Valve Timing," SAE Technical Paper 2015-01-1748, 2015, doi:10.4271/2015-01-1748.
Pages:
15
Abstract:
In this study, the effects of Variable Valve Timing (VVT) on the performance of a Homogeneous Charge Compression Ignition (HCCI) engine are analyzed by developing a computationally efficient modeling approach for the HCCI engine cycle. A full engine cycle model called Sequential Model for Residual affected HCCI (SMRH) is developed using a multi zone thermo-kinetic combustion model coupled with flow dynamic models. The SMRH utilizes CHEMKIN®-PRO and GT-POWER® software along with an in-house exhaust gas flow model. Experimental data from a single cylinder HCCI engine is used to validate the model for different operating conditions. Validation results show a good agreement with experimental data for predicting combustion phasing, Indicated Mean Effective Pressure (IMEP), thermal efficiency as well as CO emission. The experimentally validated SMRH is then used to investigate the effects of intake and exhaust valve timing on residual affected HCCI engine combustion. A new Fuel Efficiency and Emission (FEE) index is defined to optimize engine performance. SMRH is used as a virtual engine test bed to generate FEE contour maps as a function of valve timings. The simulation results determine optimum valve timings with the highest FEE index. The results indicate the SMRH is of utility for design of VVT strategies to control the HCCI engine in optimum regions with low engine-out emissions and low fuel consumption.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-04-12
Article
2016-09-06
Article
2016-08-24
Technical Paper / Journal Article
2011-04-12