Browse Publications Technical Papers 2015-01-1865
2015-09-01

A Study of Low Speed Preignition Mechanism in Highly Boosted SI Gasoline Engines 2015-01-1865

The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure. The possibility of a preignition due to particles including CaCO3 particles is numerically simulated comparing with the experimental results.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Effect of Oil and Gasoline Properties on Pre-Ignition and Super-Knock in a Thermal Research Engine (TRE) and an Optical Rapid Compression Machine (RCM)

2016-01-0720

View Details

TECHNICAL PAPER

Investigation of Lubricating Oil Properties Effect on Low Speed Pre-Ignition

2015-01-1870

View Details

TECHNICAL PAPER

Mechanism Analysis on LSPI Occurrence in Boosted S. I. Engines

2015-01-1867

View Details

X