Browse Publications Technical Papers 2015-01-1882
2015-09-01

Analysis of Thermal Efficiency Improvement of a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine with LIVC and EIVC at Partial and Full Loads 2015-01-1882

The improvement mechanism of fuel consumption at partial and full loads of a boosted direction-injection gasoline engine with the elevated geometrical compression ratio and Miller cycle by either early or late intake valve closing (EIVC or LIVC) are analyzed based on the first law of thermodynamics and one dimensional engine simulation. An increase in geometric compression ratio increases the theoretical thermal efficiency for all the operating loads, but deteriorates the fuel economy at full loads, owing primarily to the full-load knock limit. Use of Miller cycle improves the fuel economy for both the partial and full load operations by reducing the pumping loss and optimizing the combustion phasing, respectively. A comparison between EIVC and LIVC on the influencing factors on the thermal efficiency at the partial load shows that EIVC leads to higher mechanical efficiency and less heat transfer loss than LIVC, and hence its efficiency improvement is superior over LIVC. In comparison with EIVC, the LIVC strategy performs better in reducing fuel consumption at the full load thanks to its more efficient burning and optimized combustion phasing in cylinder.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of A TGDI Engine Part I: Friction Torques of Intake Cams with Different Profiles and Lifts

2017-01-2245

View Details

TECHNICAL PAPER

Threedimensional Computations for Flowfields in DI Piston Bowls

860463

View Details

TECHNICAL PAPER

NSDI-3: A Small Bore GDI Engine

1999-01-0172

View Details

X