Ice Particle Analysis of the Honeywell ALF502 Engine Booster

Paper #:
  • 2015-01-2131

Published:
  • 2015-06-15
DOI:
  • 10.4271/2015-01-2131
Citation:
Bidwell, C. and Rigby, D., "Ice Particle Analysis of the Honeywell ALF502 Engine Booster," SAE Technical Paper 2015-01-2131, 2015, doi:10.4271/2015-01-2131.
Pages:
15
Abstract:
A flow and ice particle trajectory analysis was performed for the booster of the Honeywell ALF502 engine. The analysis focused on two closely related conditions one of which produced an icing event and another which did not during testing of the ALF502 engine in the Propulsion Systems Lab (PSL) at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.63 ice accretion software. The inflow conditions for the two conditions were similar with the main differences being that the condition that produced the icing event was 6.8 K colder than the non-icing event case and the inflow ice water content (IWC) for the non-icing event case was 50% less than for the icing event case. The particle analysis, which considered sublimation, evaporation and phase change, was generated for a 5 micron ice particle with a sticky impact model and for a 24 micron median volume diameter (MVD), 7 bin ice particle distribution with a supercooled large droplet (SLD) splash model used to simulate ice particle breakup. The particle analysis did not consider the effect of the runback and re-impingement of water resulting from the heated spinner and anti-icing system. The results from the analysis showed that the amount of impingement for the components were similar for the same particle size and impact model for the icing and non-icing event conditions. This was attributed to the similar aerodynamic conditions in the booster for the two cases. The particle temperature and melt fraction were higher at the same location and particle size for the non-icing event than for the icing event case due to the higher incoming inflow temperature for the non-event case. The 5 micron ice particle case produced higher impact temperatures and higher melt fractions on the components downstream of the fan than the 24 micron MVD case because the average particle size generated by the particle breakup was larger than 5 microns which yielded less warming and melting. The analysis also showed that the melt fraction and wet bulb temperature icing criterion developed during tests in the Research Altitude Test Facility (RATFac) at the National Research Council (NRC) of Canada were useful in predicting icing events in the ALF502 engine. The development of an ice particle impact model which includes the effects of particle breakup, phase change, and surface state is necessary to further improve the prediction of ice particle transport with phase change through turbomachinery.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2003-09-08
Training / Education
2016-03-07
Training / Education
1997-05-29
Article
2016-06-21
Training / Education
2017-01-20
Technical Paper / Journal Article
2003-07-07
Training / Education
2017-05-15
Training / Education
2016-04-30