Browse Publications Technical Papers 2015-01-2139
2015-06-15

Computational Method for Ice Crystal Trajectories in a Turbofan Compressor 2015-01-2139

In this study the characteristics of ice crystals on their trajectory in a single stage of a turbofan engine compressor are determined. The particle trajectories are calculated with a Lagrangian method employing a classical fourth-order Runge-Kutta time integration scheme. The air flow field is provided as input and is a steady flow field solution governed by the Euler equations. The single compressor stage is represented using a cascaded grid. The grid consists of three parts of which the first and the last part are stator parts and the centre part is a rotor.
Each particle is modelled as a non-rotating rigid sphere. The remaining model does allow the exchange of heat and mass to and from the particle resulting in a mass, temperature and phase change of the particle. The phase change is based on a perfectly concentric ice core-water film model and it is assumed that the particle is at uniform temperature.
The results for the collection efficiency, particle temperature and amount of evaporated mass will be shown for two extreme scenario's. The first simulation is carried out at standard conditions for a Boeing-747 at cruising conditions using the International Standard Atmosphere (ISA) at that altitude, i.e. at 10,650 m. The second simulation is carried out at lower altitude where the existence of supercooled liquid water is thought to be unlikely. Both simulations are carried out at two different temperatures and for either dry or saturated air. The range of particle diameters is set from 10 to 500 micrometres.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

2015-01-2116

View Details

TECHNICAL PAPER

Design and Development of a Light Weight, High Pressure Ratio Aircraft Turbocharger

871041

View Details

TECHNICAL PAPER

An Integrated Chemical Reactor-heat Exchanger based on Ammonium Carbamate

2012-01-2190

View Details

X