Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering

Paper #:
  • 2015-01-2260

Published:
  • 2015-06-15
DOI:
  • 10.4271/2015-01-2260
Citation:
Shi, T., Chen, S., and Wang, D., "Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering," SAE Int. J. Passeng. Cars - Mech. Syst. 8(3):916-927, 2015, https://doi.org/10.4271/2015-01-2260.
Pages:
12
Abstract:
Artificial intelligence systems are highly accepted as a technology to offer an alternative way to tackle complex and non-linear problems. They can learn from data, and they are able to handle noisy and incomplete data. Once trained, they can perform prediction and generalization at high speed. The aim of the present study is to propose a novel approach utilizing the adaptive neuro-fuzzy inference system (ANFIS) and the fuzzy clustering method for automotive ride performance estimation. This study investigated the relationship between the automotive ride performance and relative parameters including speed, spring stiffness, damper coefficients, ratios of sprung and unsprung mass. A Takagi-Sugeno fuzzy inference system associated with artificial neuro network was employed. The C-mean fuzzy clustering method was used for grouping the data and identifying membership functions. The prediction results were compared with simulation testing data and experimental data of a typical A-Class automobile.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2011-04-12
Training / Education
2015-07-13
Technical Paper / Journal Article
2011-04-12
Training / Education
2016-03-10
Training / Education
2016-04-30