Browse Publications Technical Papers 2015-01-2330
2015-06-15

Coupling CFD with Vibroacoustic FE Models for Vehicle Interior Low-Frequency Wind Noise Prediction 2015-01-2330

With the reduction of engine and road noise, wind has become an important source of interior noise when cruising at highway speed. The challenges of weight reduction, performance improvement and reduced development time call for stronger support of the development process by numerical methods. Computational Fluid Dynamics (CFD) and finite element (FE) vibroacoustic computations have reached a level of maturity that makes it possible and meaningful to combine these methods for wind noise prediction.
This paper presents a method used for coupling time domain CFD computations with a finite element vibroacoustic model of a vehicle for the prediction of low-frequency wind noise below 500 Hz. The procedure is based on time segmentation of the excitation load and transformation into the frequency domain for the vibroacoustic computations. It requires simple signal processing and preserves the random character as well as the spatial correlation of the excitation signal. The aeroacoustic load is applied on the entire outer surface of the vehicle body. The computed results are validated against wind tunnel measurements on a production vehicle. The numerical and experimental investigations provide some insight into the mechanisms involved in underbody wind noise.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Prediction of Interior Noise in a Sedan Due to Exterior Flow

2015-01-2331

View Details

TECHNICAL PAPER

A Computational Approach to Evaluate the Vehicle Interior Noise from Greenhouse Wind Noise Sources

2010-01-0285

View Details

TECHNICAL PAPER

A Computational Approach to Evaluate the Vehicle Interior Noise from Greenhouse Wind Noise Sources - Part II

2011-01-1620

View Details

X