The Artificial Intelligence Application Strategy in Powertrain and Machine Control

Paper #:
  • 2015-01-2860

Published:
  • 2015-09-29
DOI:
  • 10.4271/2015-01-2860
Citation:
Ge, X. and Jackson, J., "The Artificial Intelligence Application Strategy in Powertrain and Machine Control," SAE Technical Paper 2015-01-2860, 2015, https://doi.org/10.4271/2015-01-2860.
Affiliated:
Abstract:
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive.A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning. Since a vehicle or machine can be used at different places, routes and terrains, the scope of prediction is most challenging for AI applications in the automotive industry. However, if a machine performs a substantially repetitive work cycle during its operation life, the challenge of prediction can be easily solved by partitioning a work cycle to many discrete segments.Track-type excavators, wheeled excavators, dragline excavators, wheel loaders, wheeled scrapers, and front shovels are all repetitive-work machines. If off-road trucks or articulate trucks only travel between certain locations along fixed routes in a mining site, they can also be regarded as repetitive-work machines. The task of repetitive-work machines requires machines to follow certain operation patterns regardless of terrain. Whenever a machine cycle can be recognized by engine or machine controllers, the operation cost for end users or clients can be dramatically reduced if the AI application strategies are focused on the following four areas: 1)Automation of the current segment of a work cycle2)Adaptive adjustment according to future events3)Global or system-level optimization4)Work site or fleet management improvement through work group cooperationThis paper first reviews the traditional AI applications, and then further explores AI application in the four areas by analyzing the related innovations and technology trends. The AI application strategy that can save the greatest operation cost for end users is illustrated as well.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-04-12
Training / Education
2018-05-01
Training / Education
2018-06-27
Training / Education
2007-04-30
Book
2013-01-01
Training / Education
1997-05-29
Article
2016-11-11
Training / Education
2017-06-15