Browse Publications Technical Papers 2015-24-2533
2015-09-06

A High Resolution 3D Complete Engine Heat Balance Model 2015-24-2533

The focus on engine thermal management is rapidly increasing due to the significant effect of heat losses on fuel consumption, engine performance and emissions. This work presents a time resolved, high resolution 3D engine heat balance model, including all relevant components. Notably, the model calculates the conjugated heat transfer between the solid engine components, the coolant and the oil. Both coolant and oil circuits are simultaneously resolved with a CFD solver in the same finite volume model as the entire engine solid parts.
The model includes external convection and radiation. The necessary boundary conditions of the thermodynamic cycle (gas side) are mapped from a calibrated 1D gas exchange model of the same engine. The boundary conditions for the coolant and at the oil circuits are estimated with 1D models of the systems. The model is calibrated and verified with measurement data from the same engine as modeled. The simulation results are also compared with other measurements of similar engines.
Experiments give information on the absolute energy flows in the engine system (fuel input, mechanical power and heat flows). This is used to calibrate and verify the overall accuracy of the numerical model. The model gives high-resolution space-time temperature distribution of all modeled components. Therefore, it can be used to study in detail the difference between alternative thermal management strategies. Furthermore, the model can give information about critical local temperatures for durability. These types of information are important for the optimal design of the complete vehicle cooling system, the engine-bay thermal management and the structural reliability of the engine.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Design and Analysis of Modified Radiator Fins to Improve Overall Cooling Efficiency

2020-01-2029

View Details

TECHNICAL PAPER

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-01-1014

View Details

TECHNICAL PAPER

Development of a One-Dimensional Engine Thermal Management Model to Predict Piston and Oil Temperatures

2011-01-0647

View Details

X