Modern Methods for Random Fatigue of Automotive Parts

Paper #:
  • 2016-01-0372

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-0372
Citation:
Thesing, T. and Bishop, N., "Modern Methods for Random Fatigue of Automotive Parts," SAE Technical Paper 2016-01-0372, 2016, doi:10.4271/2016-01-0372.
Pages:
13
Abstract:
Conventional approaches for the fatigue life evaluation of automotive parts like headlamps involves the evaluation of random stress conditions in either the time or frequency domain. If one is working in the frequency domain the fatigue life can be evaluated using one of the available methods like the Rayleigh (Narrow Band) approach or the more recent Dirlik method. Historically, the random stresses needed as input to these methods have been evaluated by the FEA solver (eg Abaqus, or Nastran) and these “in built” stress evaluations have limitations which relate to the fact that the stress conditions are complex and so the common “equivalents” for stress like von-Mises or Principal have not been available. There have also been limitations in the location and method of averaging for such stresses. In addition, the fatigue calculation approach for doing the evaluation has been constrained to the linear stress based (S-N) method. And finally, random methods implemented inside such solvers are inherently inefficient. Modern methods process the system properties (transfer functions) rather than the response stresses and this offers significant improvements in terms of performance. The modern methods also offer better fatigue (and fatigue material) methods like the strain based (E-N) approach and more appropriate equivalent stress options. This paper presents comparisons between the conventional methods (using Abaqus and Nastran) and the more modern methods using the CAEfatigue VIBRATION (CFV) code.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2016-04-30
Standard
1990-01-01
Training / Education
2016-03-07
Standard
1990-01-01
Standard
1990-01-01