CAE Simulation Approach to Predict Behavior of Hyper-Elastic (Rubber) Material

Paper #:
  • 2016-01-0403

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-0403
Citation:
Oza, D. and Londhe, A., "CAE Simulation Approach to Predict Behavior of Hyper-Elastic (Rubber) Material," SAE Technical Paper 2016-01-0403, 2016, doi:10.4271/2016-01-0403.
Pages:
5
Abstract:
Stiffness evaluation for components made from natural rubber using Finite Element simulation technique had been discussed in this paper. Conventional method for extraction of stiffness with metallic parts like steel using linear approach is no more valid for rubber (elastomers). Unique properties of elastomers seeks for special material model and capture non-linear behavior. Use of such material models calls for experimental test data with multiple possible directions like uniaxial tension, uniaxial compression, bi-axial tension, planar shear and volumetric test to extract material constants that can capture appropriate deformation modes of the structure. Higher strains also necessitate here to use more complex material models (Ogden, higher order polynomial) to accurately predict the stiffness characteristics.Special element formulation called hyper-elastic elements is been used to model the rubber parts in FE-Modelling. Further analysis been done using automated contact analysis techniques-friction effects, and the use of contact bodies to handle boundary conditions at an interface. Achieving contact convergence with hyper-elastic elements due to excessive distortion is been addressed with appropriate meshing technique that compensate the deformation pattern.Multiple powertrain mounts and suspension bushings have been analyzed to validate proposed simulation process. Physical test curves for mounts and bushings show good correlation with CAE simulation results for non-linear load vs deflection curves.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
2009-10-15
Technical Paper / Journal Article
1962-01-01
Technical Paper / Journal Article
2001-03-05
Technical Paper / Journal Article
1962-01-01
Technical Paper / Journal Article
1963-01-01
Technical Paper / Journal Article
1964-01-01
Training / Education
2017-01-20
Training / Education
2017-06-15
Training / Education
2016-03-10