Browse Publications Technical Papers 2016-01-0430
2016-04-05

The Effect of Loading Rate on Rubber Bushing Push-Out Testing of Front Lower Control Arms 2016-01-0430

The Front Lower Control Arm (FLCA) is a key part of the automotive suspension for performance and safety. Many FLCA designs attach to the front sub-frame using rubber handling and riding bushings, which determine the vehicle dynamics and comfort. In this paper, a design for a ride bushing using a metal pin structure is discussed. The inner portion of the ride bushing is a hollow metal collar with a layer of rubber, and the FLCA pin structure is pressed into the rubber. For safety requirements, the bushings must meet a pin push-in and push-out force requirement. During the development of the bushing design, different test groups conducted tests to determine if manufactured parts meet the push-out force specification. Each group tested at a different load rate and generated different maximum push out force values. The push-in/out speed was found to have a strong influence on the generated maximum load. A non-linear finite element analysis (FEA) model was setup to correlate to the test, and the coefficient of friction between the metal pin and viscoelastic rubber material was investigated at different loading rates in the simulation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Evaluation on Properties of Perfluoro Rubber at High Temperature

2003-01-0482

View Details

JOURNAL ARTICLE

Materials Testing for Finite Element Tire Model

2010-01-0418

View Details

TECHNICAL PAPER

Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM

2007-01-2417

View Details

X