Modelling the Exhaust Gas Recirculation Mass Flow Rate in Modern Diesel Engines

Paper #:
  • 2016-01-0550

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-0550
Citation:
Yang, Z., Winward, E., O'Brien, G., Stobart, R. et al., "Modelling the Exhaust Gas Recirculation Mass Flow Rate in Modern Diesel Engines," SAE Technical Paper 2016-01-0550, 2016, doi:10.4271/2016-01-0550.
Pages:
13
Abstract:
The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points. It is also shown that good model accuracy can be achieved when the control variables of other air path devices, e.g. the vane position of a Variable Geometry Turbocharger (VGT) and the torque demand of an Electric Turbo Assist (ETA), are kept constant during the EGR valve sweep test used to tune the model. Two different diesel engines are used in this work to demonstrate the model tuning procedure and the model validation results. Both engines are equipped with a high pressure external EGR system and a VGT. One of the engines has a relatively new air system device - an ETA. The model validation results of both engines show good model accuracy not only at steady state engine operating points but also during engine transients.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
2011-10-27
Training / Education
2017-10-03
Article
2016-04-25
Training / Education
2017-08-15
Training / Education
2009-12-15