Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines

Paper #:
  • 2016-01-0578

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-0578
Citation:
Cicalese, G., Berni, F., and Fontanesi, S., "Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines," SAE Int. J. Engines 9(1):601-617, 2016, doi:10.4271/2016-01-0578.
Pages:
17
Abstract:
New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.The paper proposes an evolution of the CFD methodology previously developed by the authors for the prediction of the engine thermal field, which is applied to two different high performance turbocharged DISI engines: the methodology employs both in-cylinder 3D-CFD combustion simulations and CHT (Conjugate Heat Transfer) simulations of the whole engine, inclusive of both the solid components and the coolant circuit. In-cylinder analyses are used as thermal boundary conditions for the CHT simulations, which are in turn a fundamental benchmark to evaluate the accuracy of the combustion heat flux estimation by means of a combination of global engine thermal survey and local temperature measurements.A preliminary evaluation of some consolidated heat transfer models is carried out to evaluate the accuracy of the predicted gas-to-wall heat fluxes. Then, a modified heat transfer model is proposed, critically motivated and applied to the specific engine conditions under investigations. The proposed model strongly improves the predictive capability of the combined in-cylinder/CHT methodology in terms of both global thermal balance and pointwise temperature distribution for both the investigated engines.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2017-12-18
Standard
2007-07-09
Training / Education
2017-10-03
Training / Education
2017-11-14
Training / Education
1999-09-27
Training / Education
2017-09-21
Training / Education
2009-12-15