Browse Publications Technical Papers 2016-01-0578
2016-04-05

Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines 2016-01-0578

New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.
The paper proposes an evolution of the CFD methodology previously developed by the authors for the prediction of the engine thermal field, which is applied to two different high performance turbocharged DISI engines: the methodology employs both in-cylinder 3D-CFD combustion simulations and CHT (Conjugate Heat Transfer) simulations of the whole engine, inclusive of both the solid components and the coolant circuit. In-cylinder analyses are used as thermal boundary conditions for the CHT simulations, which are in turn a fundamental benchmark to evaluate the accuracy of the combustion heat flux estimation by means of a combination of global engine thermal survey and local temperature measurements.
A preliminary evaluation of some consolidated heat transfer models is carried out to evaluate the accuracy of the predicted gas-to-wall heat fluxes. Then, a modified heat transfer model is proposed, critically motivated and applied to the specific engine conditions under investigations. The proposed model strongly improves the predictive capability of the combined in-cylinder/CHT methodology in terms of both global thermal balance and pointwise temperature distribution for both the investigated engines.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Combined In-cylinder / CHT Analyses for the Accurate Estimation of the Thermal Flow Field of a High Performance Engine for Sport Car Applications

2013-01-1088

View Details

TECHNICAL PAPER

Measurements and Multidimensional Modeling of Gas-Wall Heat Transfer in a S.I. Engine

880516

View Details

TECHNICAL PAPER

Isobaric Combustion at a Low Compression Ratio

2020-01-0797

View Details

X