Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

Paper #:
  • 2016-01-0617

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-0617
Citation:
Zhao, D., Winward, E., Yang, Z., Rutledge, J. et al., "Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines," SAE Technical Paper 2016-01-0617, 2016, doi:10.4271/2016-01-0617.
Pages:
9
Abstract:
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics. The dynamics analysis and controller are successfully validated through experiments and simulations.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
2005-06-27
Article
2016-03-04
Technical Paper / Journal Article
2003-10-27
Article
2016-03-04
Technical Paper / Journal Article
2004-11-16