A Two-Layer Approach for Predictive Optimal Cruise Control

Paper #:
  • 2016-01-0634

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-0634
Citation:
Bauer, K. and Gauterin, F., "A Two-Layer Approach for Predictive Optimal Cruise Control," SAE Technical Paper 2016-01-0634, 2016, doi:10.4271/2016-01-0634.
Pages:
8
Abstract:
Optimization-based strategy planning for predictive optimal cruise control has the potential for significant improvements in passenger comfort and fuel efficiency. It is, however, associated with a high computational complexity that complicates its implementation in an electronic control unit. When implementing predictive cruise control, real-time capability must be ensured while maintaining optimal control performance in the presence of disturbance and model uncertainty. Real-time capability can be achieved either by a significant simplification of the optimization problem or by a layered control approach, combining the strategy planner with a low-level controller. Both approaches, however, are prone to deteriorate optimal control performance, particularly in the presence of disturbance. We present a model-predictive controller structure that extends the layered control approach by using the same optimization algorithm on two layers. A low-frequency planner that generates the optimal control strategy is combined with a high-frequency stabilization planner that tracks the strategy and closes the control loop on a short planning horizon. This reduces the computational load while maintaining an optimal response to disturbance. The approach is applied to a predictive cruise control system and compared to existing stabilization schemes in a simulation environment.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2006-11-21
Technical Paper / Journal Article
2008-04-14
Training / Education
2017-08-14
Standard
2013-03-11
Technical Paper / Journal Article
2006-11-21
Standard
2009-11-20