Browse Publications Technical Papers 2016-01-1073
2016-04-05

Torque Estimation Based Virtual Crank Angle Sensor 2016-01-1073

In engine management systems many calculations and actuator actions are performed in the crank angle domain. Most of these actions and calculations benefit from an improved accuracy of the crank angle measurement. Improved estimation of crank angle, based on pulse signals from an induction sensor placed on the flywheel of a heavy duty CI engine is thus of great importance.
To estimate the crank angle the torque balance on the crankshaft is used. This torque balance is based on Newton’s second law. The net torque gives the flywheel acceleration which in turn gives engine speed and crank angle position. The described approach was studied for two crankshaft models: A rigid crankshaft approach and a lumped mass approach, the latter having the benefit of being able to capture the torsional effects of the crankshaft twisting and bending due to torques acting on it. These methods were then compared to a linear extrapolation of the engine speed, a common method to estimate crank angle today.
The modelled results were compared to experimental data from 36 operating points. The results indicate that using a torque based model to predict torsion improves the accuracy of the crank angle measurement, especially for higher engine loads and in the combustion part of the engine cycle. The rigid crankshaft approach on the other hand does not give enough improvement of the accuracy compared to plain extrapolation to warrant further work.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Electric water pump for engine cooling

2007-01-2785

View Details

TECHNICAL PAPER

Magnetorheological Fluid Based Kinetic Energy Recovery System

2011-28-0070

View Details

TECHNICAL PAPER

CFD Prediction of Crankcase Flow Regimes in a Crankcase Scavenged Two-Stroke Engine

970361

View Details

X