Browse Publications Technical Papers 2016-01-1244
2016-04-05

Optimal Control of Integrated Starter and Generator for Maximum Energy Recovery during Engine Stop Transition in Hybrid Electric Vehicles 2016-01-1244

An integrated starter and generator (ISG) is a type of electric machine which is mechanically connected to an internal combustion engine (ICE). The ISG is intended to conduct important roles in the hybrid electric vehicle (HEV) such as engine start and stop. Since the HEV has frequent electric vehicle (EV)/HEV mode transition, rapid engine cranking and vibration-free engine stop controls are necessary. In the case of the engine stop, the ISG provides the negative torque output to the ICE which can rapidly escape from its resonance speed. However, the ISG torque is determined by engineering intuition, the amount of energy recovery is hardly considered. Dynamic programming (DP) is an effective solution to find optimal ISG control strategy to maximize energy recovery during engine stop transition. Even though DP is an offline algorithm, the result can be used as a reference to evaluate and improve an existing on-line algorithm. In this paper, the procedures for applying DP to ISG control during engine stop transition are explained. Simplified powertrain model, which consists of mechanical and electrical parts of HEV powertrain, is given. Then DP is applied to this model in order to verify the effect of cost function on maximizing energy recovery. In the simulation, the amount of energy recovery using DP is about 70kJ for 40 engine stop events over FTP 4-bag cycle. In addition, based on the DP result, a look-up table based real-time control is developed in the small size HEV. This experiment results in an improvement of 0.7 % better mileage in FTP 4-bag cycle.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Use of Vehicle Navigation Information and Prediction of Journey Characteristics for the Optimal Control of Hybrid and Electric Vehicles

2011-01-1025

View Details

TECHNICAL PAPER

Battery Modeling for HEV Simulation Model Development

2001-01-0960

View Details

TECHNICAL PAPER

Design and Optimization of a Hybrid City Minibus

2004-01-3063

View Details

X