Study on a Closed-Loop Coupling Model without Coupling Spring

Paper #:
  • 2016-01-1315

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-1315
Citation:
Du, Y., Lv, Y., Wang, Y., and Gao, P., "Study on a Closed-Loop Coupling Model without Coupling Spring," SAE Int. J. Passeng. Cars - Mech. Syst. 9(1):227-233, 2016, doi:10.4271/2016-01-1315.
Pages:
7
Abstract:
Closed-loop coupling model, based on complex eigenvalue analysis, is one of the most popular and effective methods for brake squeal analysis. In the model, imaginary coupling springs are used to represent the normal contacting force between coupled nodes. Unfortunately, the physical meaning of these coupling springs was seldom discussed and there’s no systematic method to determine the value of spring stiffness. Realizing this problem, this paper, based on finite element model and modal synthesis technique, develops a new closed-loop coupling disc brake squeal model without introducing imaginary coupling springs. Different from the traditional model where two nodes at coupling interface are connected through a spring, these node-pairs in the new model are assumed to remain in tight contact during vibration. Details of the model, including force analysis, coordinate reduction and transformation and complex eigenvalue decomposition are given in this paper. Finally, the presented method is applied on the modelling of a squealing disc brake, which shows good correlation between model prediction results and those from bench test. Besides, because there are less indeterminate model parameters, the time for parameters tuning process is greatly reduced.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-08-24
Technical Paper / Journal Article
2010-09-28
Technical Paper / Journal Article
2010-09-28
Training / Education
2017-01-20