Browse Publications Technical Papers 2016-01-1340
2016-04-05

Numerical Simulation of Heat Transfer Characteristics of Swirling Turbulent Flame Impinging on Flat Surface 2016-01-1340

This paper presents a CFD simulation methodology for solving complex physics of methane/air swirling turbulent flame impinging on a flat surface. Turbulent Flow in burner is simulated using Re-Normalized Group k-ε model while Stress-omega Reynolds Stress Model is used for flame structure. Methane/air combustion is simulated using global combustion reaction mechanism. To account for Turbulence-Chemistry Interaction of methane/air combustion, Eddy - Dissipation Model is used. The effect of varying plate distance to burner exit nozzle diameter is also investigated and comparisons of simulated results with experiments are discussed. Change in flame structure is observed with variation of plate distance from burner exit. A dip in the heat flux distribution is observed for all cases. This is due to the presence of central weak flow region created at and around the central axis due to swirl.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Energy Optimizing of High-Compression-Ratio Combustion Chambers

845006

View Details

TECHNICAL PAPER

Modeling Diesel Engine Combustion With Detailed Chemistry Using a Progress Variable Approach

2005-01-3855

View Details

TECHNICAL PAPER

Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations

972881

View Details

X