Optimal Design of Cellular Material Systems for Crashworthiness

Paper #:
  • 2016-01-1396

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-1396
Citation:
Liu, K., Xu, Z., Detwiler, D., and Tovar, A., "Optimal Design of Cellular Material Systems for Crashworthiness," SAE Technical Paper 2016-01-1396, 2016, doi:10.4271/2016-01-1396.
Pages:
8
Abstract:
This work proposes a new method to design crashworthiness structures that made of functionally graded cellular (porous) material. The proposed method consists of three stages: The first stage is to generate a conceptual design using a topology optimization algorithm so that a variable density is distributed within the structure minimizing its compliance. The second stage is to cluster the variable density using a machine-learning algorithm to reduce the dimension of the design space. The third stage is to maximize structural crashworthiness indicators (e.g., internal energy absorption) and minimize mass using a metamodel-based multi-objective genetic algorithm. The final structure is synthesized by optimally selecting cellular material phases from a predefined material library. In this work, the Hashin-Shtrikman bounds are derived for the two-phase cellular material, and the structure performances are compared to the optimized structures derived by our proposed framework. In comparison to traditional structures that made of a single cellular phase, the results demonstrate the improved performance when multiple cellular phases are used.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items