Browse Publications Technical Papers 2016-01-1561
2016-04-05

Enhanced Vehicle Handling and Ride through Anti-Pitch Anti-Roll Hydraulically Interconnected Suspension 2016-01-1561

Development of a passive anti-pitch anti-roll hydraulically interconnected suspension (AAHIS) with the advantage of improving vehicle directional stability and handling quality is presented. A 7 degrees-of-freedom full car model and a 20 degrees-of-freedom anti-pitch anti-roll hydraulically interconnected suspension model dynamically coupled together through boundary conditions are developed and used to evaluate vehicle handing dynamic responses under steering/braking maneuvers. The modeling of mechanical subsystem is established based on the Newton’s second law and the fluid subsystem is modelled using a nonlinear finite-element approach. A motion-mode energy method (MEM) based on the calculation of the motion-mode energy is employed to investigate the effects of an anti-pitch anti-roll hydraulically interconnected suspension (AAHIS) system on vehicle body-wheel motion-mode energy distribution. The performance of AAHIS system and its contribution to the vehicle body-wheel motion-mode energy distribution are demonstrated under combined steering and braking maneuvers. The dynamic response of AAHIS system shows enhanced handling and ride performance as well as improved vehicle anti-roll and anti-pitch properties.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Control Research of Nonlinear Vehicle Suspension System Based on Road Estimation

2018-01-0553

View Details

TECHNICAL PAPER

Methodology for Getting a 7 Degree of Freedom Vehicular Model for Active Suspension Control System Design

2007-01-2676

View Details

TECHNICAL PAPER

A Path Planning and Model Predictive Control for Automatic Parking System

2020-01-0121

View Details

X