Integrated Aero-Thermal Testing of a Race Car in a Full Scale Climatic Wind Tunnel

Paper #:
  • 2016-01-1588

Published:
  • 2016-04-05
DOI:
  • 10.4271/2016-01-1588
Citation:
Abdel-Rahman, A., Agelin-Chaab, M., Elfstrom, G., and Komar, J., "Integrated Aero-Thermal Testing of a Race Car in a Full Scale Climatic Wind Tunnel," SAE Technical Paper 2016-01-1588, 2016, doi:10.4271/2016-01-1588.
Pages:
12
Abstract:
Wind tunnels with integrated aerodynamic and thermodynamic testing with yaw capabilities are not common. In this study however, an integrated aerodynamic and thermodynamic testing system with yaw capabilities is developed and applied in the climatic wind tunnel at the University of Ontario-Institute of Technology (UOIT). This was done by installing an incremental force measuring system (FMS) on the large turntable that features a chassis dynamometer. The testing system was utilized to implement an integrated aero-thermal test on a full-scale race car. An efficient testing protocol was developed to streamline the integrated testing process. The FMS was used to enhance the test car’s stability, cornering speed, and fuel efficiency by using aerodynamic devices. These objectives were achieved by installing a high rear wing to increase the rear downforce, a modified front splitter extension to produce a front downforce gain, and front canards to contribute to drag reduction. In addition, a thermodynamic test was conducted to study the effect of yaw on upperbody and underbody temperature distribution during the car’s operational condition. Temperature analysis from this test revealed that radiator performance was jeopardized in yaw. It also showed that some aerodynamic devices (such as a rear diffuser) can contribute negatively to the underbody cooling performance of the car. The implications of this study demonstrate that the climatic wind tunnel at UOIT is a viable tool for integrated motorsport testing, which can be used to achieve a significant competitive advantage.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Book
2011-01-01
Technical Paper / Journal Article
2006-12-05
Standard
2013-03-11