Browse Publications Technical Papers 2016-01-1604
2016-04-05

Experimental and Computational Study of Vehicle Surface Contamination on a Generic Bluff Body 2016-01-1604

This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon.
The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle. The aim is to investigate the fundamentals of contamination in a case where both flow field and contamination patterns can be measured, and also to provide validation of modelling techniques in a case where flow and spray conditions are known.
CFD results were obtained using both steady RANS and unsteady URANS solvers, combined with particle tracking methods. Steady RANS does not capture the wake structures accurately and this affects the contamination prediction. URANS is able to recover the large-scale wake unsteadiness seen in the experimental data, but the difference between the experimental and computational contamination distributions is still notable. The CFD is also able to provide further insight by showing the behaviour of particles of different sizes. Large particles are found to take on a ballistic trajectory and penetrate the wake. In contrast, small particles are shown to be less likely to become entrained into the wake.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Coupled Level-Set Volume of Fluid Simulations of Water Flowing Over a Simplified Drainage Channel With and Without Air Coflow

2017-01-1552

View Details

TECHNICAL PAPER

A Comparison Between On-Road and Wind Tunnel Surface Pressure Measurements on a Mid-Sized Hatchback

2007-01-0898

View Details

TECHNICAL PAPER

Analysis and Design of Automobile Forebodies Using Potential Flow Theory and a Boundary Layer Separation Criterion

830999

View Details

X