Real-time Pedestrian Detection using Convolutional Neural Network on Embedded Platform

Paper #:
  • 2016-01-1877

Published:
  • 2016-09-14
DOI:
  • 10.4271/2016-01-1877
Citation:
Hu, J., Liu, W., Cheng, S., Tian, H. et al., "Real-time Pedestrian Detection using Convolutional Neural Network on Embedded Platform," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 10(1):2017, doi:10.4271/2016-01-1877.
Pages:
6
Abstract:
The convolutional neural network (CNN) has achieved extraordinary performance in image classification. However, the implementation of such architecture on embedded platforms is a big challenge task due to the computing resource constraint issue. This paper concentrates on optimization of CNN on embedded platforms with a case study of pedestrian detection in ADAS. The main contribution of this proposed CNN is its ability to run pedestrian classification task in real time with high accuracy based on a platform with ARM embedded. The CNN model has been trained with GPU locally and then transformed into an efficient implementation on embedded platforms. The efficient implementation uses dramatically small network scale and a lightweight CNN is obtained. Specifically, parameters of the network are compressed by adopting integer weights to reduce computational complexity. Meanwhile, other optimizations have also been proposed to adapt the general ARM processor architecture. Finally, a robust and efficient CNN architecture is executed to run pedestrian detection algorithm in real time. The embedded platform employs a 1GHz Cortex-A53 ARMv8 based CPU. The network performs nearly 200 regions of interest detection per second with 97% accuracy by using a single core of Cortex-A53 in real traffic scene.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-03-01
Standard
2000-02-17
Technical Paper / Journal Article
2005-04-11
Standard
2006-09-12
Training / Education
2011-11-02