Browse Publications Technical Papers 2016-01-9078
2016-10-24

Characterization of Damaging Biodiesel Deposits and Biodiesel Samples by Infrared Spectroscopy (ATR-FTIR) and Mass Spectrometry (TOF-SIMS) 2016-01-9078

Biodiesel contains a variety of compounds, depending on the production and the provenance of the fuel. During the production process and usage, some of these compounds can form deposits (nozzle tip deposits or internal diesel injector deposits: “IDID”), which may lead to severe problems, such as corrosion, filter blockage and other technical issues. To deal with these difficulties, it is essential to exactly determine the components of these deposits. Most analytical methods used before, require complex preparations and result in limited information of the deposit material. Using infrared microscopy (ATR-FTIR: Attenuated-Total-Reflection Fourier-Transform-Infrared-Spectroscopy) or mass spectrometry (TOF-SIMS: Time-of-Flight Secondary-Ion-Mass-Spectrometry), a direct analysis of the original deposit material is possible.
In order to analyze the chemical composition of the deposits, samples were taken from affected engine parts and filling stations and examined with a TOF-SIMS instrument and a common infrared microscope. Infrared investigations of the engine parts hint to the presence of carboxylic acid salts and mass spectra of the same samples indicate various organic compounds, partly based on polyisobutylene succinimides (“PIBSI”). In the spectra of plugged fuel filters peak-pattern of different sterol glucosides and related compounds are observed. The analyses of directly taken biodiesel samples reveal ingredients such as fatty acid methyl esters (FAME) and steryl esters among other things, so that very detailed descriptions of the fuel constitution are possible. Altogether these investigations show that the combination of infrared spectroscopy and TOF-SIMS is a powerful tool, which provides a large amount of information in order to gain a detailed insight in the formation of these deposits.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Contaminants Affecting the Formation of Soft Particles in Bio-Based Diesel Fuels during Degradation

2019-01-0016

View Details

TECHNICAL PAPER

Development of a Method to Measure Soft Particles from Diesel Type Fuels

2020-01-0344

View Details

TECHNICAL PAPER

Investigations Regarding the Causes of Filter Blocking in Diesel Powertrains

2022-01-1069

View Details

X