Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

Paper #:
  • 2017-01-0131

Published:
  • 2017-03-28
Pages:
15
Abstract:
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation. The physics captured in the simulation includes the turbulent flow out of the coolant pump, turbulent mixing, heat transport, and rigorous treatment of Fluid Structure Interaction (FSI) of the circuit with the dynamic valves in the system. Two different operating sets of data are used for the analysis, case A, lower engine speed and case B, higher engine speed. The details of the model setup and the comparisons of the simulation results with experimental data are discussed in the paper.
Also in:
  • SAE International Journal of Engines - V126-3EJ
  • SAE International Journal of Engines - V126-3
Sector:
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2004-01-16
Standard
1964-08-01
Article
2016-03-04
Standard
2002-10-25