Robust 1D Modelling for Automotive HVAC Warmup Prediction Using DFSS Approach

Paper #:
  • 2017-01-0179

Published:
  • 2017-03-28
DOI:
  • 10.4271/2017-01-0179
Citation:
Sambandan, S., Valencia, M., and S, S., "Robust 1D Modelling for Automotive HVAC Warmup Prediction Using DFSS Approach," SAE Technical Paper 2017-01-0179, 2017, doi:10.4271/2017-01-0179.
Pages:
7
Abstract:
In an automotive air-conditioning (AC) system, the heater system plays a major role during winter condition to provide passenger comforts as well as to clear windshield defogging and defrost. In order to meet the customer satisfaction the heater system shall be tested physically in severe cold conditions to meet the objective performance in wind tunnel and also subjective performance in cold weather regions by conducting on road trials. This performance test is conducted in later stage of the program development, since the prototype or tooled up parts will not be available at initial program stage.The significance of conducting the virtual simulation is to predict the performance of the HVAC (Heating ventilating air-conditioning) system at early design stage. In this paper the development of 1D (One dimensional) model with floor duct systems and vehicle cabin model is studied to predict the performance. Analysis is carried out using commercial 1D simulation tool KULI®. All the simulation parameter which affects the correlation process has been studied carefully by using DFSS (Design for six sigma) methodology. L18 orthogonal array developed to understand the influence of each simulation parameters. Data analysis is carried out from DFSS study output and identified the importance of each simulation parameters which is being adjusted for correlation. This methodology helps to predicts accurately for any change in the HVAC heater systems circuit components like heater core, heater core inlet coolant flows, heater core inlet coolant temperatures, heater core airflow etc. This study enhances to reduce the number of physical tests, prototypes and cost involved in it.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2003-11-10
Technical Paper / Journal Article
2003-10-27
Training / Education
2017-07-17
Technical Paper / Journal Article
2003-10-19