Browse Publications Technical Papers 2017-01-0192
2017-03-28

Energy Efficiency and Performance of Cabin Thermal Management in Electric Vehicles 2017-01-0192

The energy used for cabin cooling and heating can drastically reduce the operating range of electric vehicles. The energy efficiency and performance of the cabin heating, ventilation and air conditioning (HVAC) system depend on the system configuration and ambient conditions. The presented research investigates the energy efficiency and performance of cabin thermal management in electric vehicles. A simulation model of cabin heating and cooling systems was developed in the AMESim software. Simulations were carried out in the standard test cycles and one real-world driving cycle to take into account different driving behaviors and environments. The cabin thermal management performance was analyzed in relation to ambient temperature, system efficiency and cabin thermal balance. The simulation results showed that the driving range can shorten more than 50% in extreme cold conditions. The energy efficiency of cabin thermal management can be improved by using a heat pump and recovering waste heat from powertrain components. According to the simulations results, a heat pump system with an electric heater can significantly reduce the HVAC system energy consumption. In mild ambient temperatures, between -5 °C and 10 °C, the driving range was increased by 6-22% depending on the driving cycle. Waste heat recovery from powertrain components further improved the energy efficiency of the heat pump system resulting in a decrease of 2-4% in the vehicle energy consumption. Simulation results also show that the battery heating in cold conditions can increase the energy consumption more than 20%.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Air Conditioning System Performance and Vehicle Fuel Economy Trade-Offs for a Hybrid Electric Vehicle

2017-01-0171

View Details

TECHNICAL PAPER

Modeling Control Strategies and Range Impacts for Electric Vehicle Integrated Thermal Management Systems with MATLAB/Simulink

2017-01-0191

View Details

TECHNICAL PAPER

Assessment of Energy Consumption and Range in Electric Vehicles with High Efficiency HVAC Systems Based on the Tesla Expander

2019-24-0244

View Details

X