Optimization of a Military Ground Vehicle Engine Cooling System Heat Exchanger - Modeling and Size Scaling

Paper #:
  • 2017-01-0259

Published:
  • 2017-03-28
Abstract:
ABSTRACT Heat rejection in ground vehicle propulsion systems remains a challenge given variations in powertrain configurations, driving cycles, and ambient conditions as well as space constraints and available power budgets. An optimization strategy is proposed for engine radiator geometry size scaling to minimize the cooling system power consumption while satisfying both the heat removal rate requirement and the radiator dimension size limitation. A finite difference method (FDM) based on a heat exchanger model is introduced and utilized in the optimization design. The optimization technique searches for the best radiator core dimension solution over the design space, subject to different constraints. To validate the proposed heat exchanger model and optimization algorithm, a heavy duty military truck engine cooling system is investigated. The proposed radiator size scaling algorithm has been shown to be capable of predicting the minimal geometry size of the engine radiator with limited cooling power available, and also minimizing the cooling power requirement for a restricted radiator dimension size. For a convoy escort driving cycle, numerical results demonstrate that by increasing the prototype radiator frontal area, the cooling system energy cost can be significantly reduced. 1. INTRODUCTION The powertrain thermal management system remains one of the top challenges in modern ground vehicle development. A robust powertrain cooling system is required to ensure that the powertrain functions properly as evident by high engine combustion efficiency and low emissions [1].
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2003-10-19
Technical Paper / Journal Article
2003-10-27
Technical Paper / Journal Article
2003-10-27
Article
2016-03-01
Article
2016-03-04