Degradation Analysis of Flexible Film Cables in an Automotive Environment

Paper #:
  • 2017-01-0317

Published:
  • 2017-03-28
Abstract:
Automobiles have a high degree of mechanical and electrical complexity. Product complexity has the accompanying effect of requiring high levels of design and process complicatedness. The net result is a product development process which is prone to “creating failures”. These failures typically have their origin in an overall lack of complete understanding of the system in terms of materials, geometries and energy flows. Despite all of the engineering intentions “mistakes” are inevitably, common and must be dealt with accordingly. In the worst case, if a mistake manifests itself into a product failure mode the customer may have a negative experience. Therefore, it is imperative that once a mistake surfaces that design engineers, suppliers along with reliability professionals assess the associated risk. One approach to assess risk is the use of degradation analysis. Degradation analysis often provides more information than failure time data for assessing reliability and predicting the remnant life of a system. In general, degradation is the reduction in performance over time leading to an observed failure. Many failure modes may be traced to an underlying degradation process. For example, one failure mode associated with flexible film cables (FFCs) is short circuits due to wire migration. Under certain conditions (e.g. elevated temperatures) the ribbon material becomes pliable and if the cable is under stress the encased wires may begin to migrate towards one another ultimately resulting in an electrically shorted condition. This type of situation is a kind of stochastic process; therefore, it could be modeled in several approaches. This paper presents the degradation analysis approach as applied to the flexible film cable in an attempt to identify the merits, limitation, and applications of the model in generating system understanding by which to make informed decisions.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
1968-01-01
Book
2005-12-08
Training / Education
2017-02-28
Technical Paper / Journal Article
2006-12-05
Standard
2005-06-27
Article
2016-02-02
Training / Education
2017-05-04
Article
2016-02-02