Browse Publications Technical Papers 2017-01-0318
2017-03-28

Ductile Fracture Prediction of Automotive Suspension Components 2017-01-0318

Characterization of the plastic and ductile fracture behavior of a ferrous casting commonly used for the steering knuckle of an automotive suspension system is presented in this work. Ductile fracture testing for various coupon geometries was conducted to simulate a wide range of stress states. Failure data for the higher stress triaxiality were obtained from tension tests conducted on thin flat specimens, wide flat specimens and axisymmetric specimens with varying notch radii. The data for the lower triaxiality were generated from thin-walled tube specimens subjected to torsional loading and compression tests on cylindrical specimens. The failure envelopes for the material were developed utilizing the test data and finite element (FE) simulations of the corresponding test specimens. Experiments provided the load-displacement response and the location of fracture initiation. FE simulations were conducted to calculate all the stress states, Lode angles and strain components at the point of fracture initiation. Finally, comparisons of the predicted fracture load with data from physical tests are presented for a load case of the steering knuckle, which introduces complex stress states.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Design Criteria and Durability Approval of Wheel Hubs

982840

View Details

TECHNICAL PAPER

The Full Plastic Car - Reality by Using Modular Systems

910361

View Details

TECHNICAL PAPER

Criteria for Predicting Skid Line by Simulation

2017-01-0300

View Details

X