Browse Publications Technical Papers 2017-01-0332
2017-03-28

Frequency Effects on High-Density Polyethylene Failure under Cyclic Loading 2017-01-0332

High density polyethylene (HDPE) is widely used in automotive industry applications. When a specimen made of HDPE tested under cyclic loading, the inelastic deformation causes heat generated within the material, resulting in a temperature rise. The specimen temperature would stabilize if heat transfer from specimen surface can balance with the heat generated. Otherwise, the temperature will continue to rise, leading to a thermo assist failure. It is shown in this study that both frequencies and stress levels contribute to the temperature rise. Under service conditions, most of the automotive components experience low cyclic load frequency much less than 1 Hz. However, the frequency is usually set to a higher constant number for different stress levels in current standard fatigue life tests. This practice may lead to confusion in understanding the failure mechanism of polymer material and the fatigue data obtained from the lab test would not be appropriate for evaluation of the real components. In order to clarify this confusion, a critical stress-frequency failure map is proposed in this paper to identify if the failure is due to overheating or crack propagation. Additionally a mathematical methodology is developed to model temperature increase due to energy dissipation under cyclic loading, with help of which the critical stress-frequency failure map is numerically predicted. Good agreement is found between the experimental results and model predictions, which sheds light on thorough understanding of the complicated failure mechanism in thermoplastic polymers.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Study of Improvement on the Diaphragm's Gas Permeability in the Accumulator

921718

View Details

TECHNICAL PAPER

Design and Test of a Honeycomb Radiator Panel with Carbon Fiber Reinforced Plastic Facesheets and Aluminium Heat Pipes

932302

View Details

TECHNICAL PAPER

VOC-Free, Cross-Linkable Acrylic Copolymers for Eco-Friendly Automotive Composites

2011-01-0220

View Details

X