Investigation on cylinder bore deformation under static condition based on Fourier decomposition

Paper #:
  • 2017-01-0366

Published:
  • 2017-03-28
Abstract:
Due to the mechanical forces under high temperature and pressure conditions, the engine cylinders cross section will not be a round circle any more once they are installed. Therefore, both static and dynamic conditions can change the geometry of the cylinders. On the other hand, deformation of engine cylinder causes increasing lubricating oil consumption and abnormal wear, resulting of worse fuel economy and emissions. However, prediction of deformation on a liner has not been made because of the complication of conditions and structure. In this study, a V6 engine body model was built and meshed with Hypermesh suit software. Also, cylinder deformation under static condition has been simulated and analyzed. Basically, few parameters like pre-tightened force, structure and distribution of bolts have been investigated to figure out how the cylinder bore deformation behaves via finite element analysis. Also, a simple Matlab program had been developed to process the data. Specifically, Fourier decomposition has been used to find out the typical style of cylinder deformation. The results show that under static condition, the level of pre-tightened force is one of the most important factors. Furthermore, longer length of bolt reduces the cylinder distortion due to changing the depth distribution of forces, and symmetrically distributed bolts lead to the lowest bore deformation. The Fourier program results indicate that the most typical cylinder deformation styles are the 2nd-order and the 4th-order. Among all of those deformation styles, the 2nd-order dominates and orders higher than 8 do not contribute too much to the total deformation. Based on this study, optimizing the static conditions will be helpful to protect the cylinder from distorting and wearing.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
1990-01-01
Standard
1990-01-01
Standard
1990-01-01
Standard
2012-10-15
Training / Education
2017-01-20