Browse Publications Technical Papers 2017-01-0572
2017-03-28

An Efficient and Unified Combustion Model for CFD of SI and CI Engine Operation 2017-01-0572

In this work, an efficient and unified combustion model is introduced to simulate the flame propagation, diffusion-controlled combustion, and chemically-driven ignition in both SI and CI engine operation. The unified model is constructed upon a G-equation model which addresses the premixed flame propagation. The concept of the Livengood-Wu integral is used with tabulated ignition delay data to account for the chemical kinetics which is responsible for the spontaneous ignition of fuel-air mixture. A set of rigorously defined operations are used to couple the evolution of the G scalar field and the Livengood-Wu integral. The diffusion-controlled combustion is simulated equivalent to applying the Burke-Schumann limit. The combined model is tested in the simulation of the premixed SI combustion in a constant volume chamber, as well as the CI combustion in a conventional small bore diesel engine. The result shows satisfactory accuracy of the predicted cylinder pressure and heat release rate, while maintaining low computational cost. The combined model provides a natural, robust, and efficient solution to two difficult tasks in development-oriented computational-power-constrained engine simulation: a) to predict SI knock in G-equation simulation; b) to account for the CI induction time in spray combustion simulation at the Burke-Schumann limit.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Measurement and Simulation of Intake Port and In-Cylinder Air Flow of Diesel and Gasoline Engines

2005-24-072

View Details

TECHNICAL PAPER

Dynamic Application of a Skeletal Mechanism for DI Diesel NOX Emissions

2001-01-1984

View Details

TECHNICAL PAPER

Direct Injection Concept as a Support of Engine Down-Sizing

2003-01-0541

View Details

X