An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench.

Paper #:
  • 2017-01-0604

Published:
  • 2017-03-28
Abstract:
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation, are among the main objectives of engine development. Simultaneously the development costs and development time have to be reduced steadily. For these reasons high demands regarding quality and validity of measurements at the engine test bench are rising continuously. In this paper a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion relevant component setups will be presented. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements. For increasing measurement validity, engine setting parameters are permanently monitored to ensure exact and consistent engine adjustments according to the test plan. Furthermore, embedded 0D engine simulations are used to correct undesired setting parameter deviations in order to create a consistent data base used for model based optimization (DoE) and combustion relevant component decisions. The methodology was verified by a measurement campaign carried out at an industrial engine. The new methodology is reducing potential incorrect measurements that have to be repeated. In addition it ensures taking only valid measurements for model based techniques (DoE) that have been 0D-corrected if necessary. Test bench time can be shortened, leading to a reduction and better utilization of development costs as well.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-02-02
Technical Paper / Journal Article
2004-06-08
Technical Paper / Journal Article
2004-01-16
Article
2016-02-02
Training / Education
2010-03-15
Technical Paper / Journal Article
2003-10-27
Technical Paper / Journal Article
2004-01-16