Browse Publications Technical Papers 2017-01-0609
2017-03-28

A Unified Creep-Speed Control Approach for Automated Parking System 2017-01-0609

This paper presents a unified creep-speed controller specifically designed for the automated parking system of an automated manual transmission vehicle, whereby the engine management system, transmission control unit, and electronic stability control system can work cooperatively and harmoniously within the same control framework. First, a novel reference speed generator is designed and employs sinusoidal functions to produce the speed profile based on the maneuver-dependent distances computed by a path planner, such that the lag in vehicle response during start-up can be effectively reduced. Second, a well-tuned PID controller is adopted to determine the resultant longitudinal force in attempt to follow the reference speed and eliminate the distance error during the parking maneuvers. Third, the electronic control units in the powertrain and brake systems interact with one another and generate exclusive control actions in order to achieve the desired motion control command, where the non-smooth actuator nonlinearities are explicitly addressed. Finally, the proposed controller is validated through simulation to improve the tracking accuracy of the predefined time-dependent parallel-parking trajectory at creep speeds.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

AISIN AW New Full Hybrid Transmission for FWD Vehicles

2005-01-0277

View Details

TECHNICAL PAPER

An Advanced Electronic Control and Diagnostic System for Automatic Transmission

942330

View Details

STANDARD

Clutch Dimensions for Truck and Bus Applications

J1806_201708

View Details

X