Browse Publications Technical Papers 2017-01-0611
2017-03-28

Development and Usage of a Continuously Differentiable Heavy Duty Diesel Engine Model Equipped with VGT and EGR 2017-01-0611

Today’s need for fuel efficient vehicles, together with increasing engine component complexity, makes optimal control a valuable tool in the process of finding the most fuel efficient control strategies. To efficiently calculate the solution to optimal control problems a gradient based optimization technique is desirable, making continuously differentiable models preferable. Many existing control-oriented Diesel engine models do not fully posses this property, often due to signal saturations or discrete conditions. This paper offers a continuously differentiable, mean value engine model, of a heavy-duty diesel engine equipped with VGT and EGR, suitable for optimal control purposes. The model is developed from an existing, validated, engine model, but adapted to be continuously differentiable and therefore tailored for usage in an optimal control environment. The changes due to the conversion are quantified and presented. Furthermore, it is shown and analyzed how to optimally control the engine in a fuel optimal way under steady-state conditions, and in a time optimal way in a tip-in scenario.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Direct Coupled 1D/3D-CFD-Computation (GT-Power/Star-CD) of the Flow in the Switch-Over Intake System of an 8-Cylinder SI Engine with External Exhaust Gas Recirculation

2002-01-0901

View Details

TECHNICAL PAPER

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-01-0728

View Details

TECHNICAL PAPER

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-01-1000

View Details

X