Improvement on Discharge Efficiency of the Spark Ignition System

Paper #:
  • 2017-01-0678

Published:
  • 2017-03-28
Abstract:
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems are progressing rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances. In this paper, inductive coils with different primary and secondary inductances as well as turning ratios were tested to investigate the effect of inductive ignition system parameters on discharging characteristics under different control parameter such as charging voltage and charging duration. Furthermore, different ignition strategies based on inductive coil system including repetitive discharge strategy and dual coil discharge strategy was also investigated, and compared with traditional single spark strategy. Special attention was paid to energy losses inside the electrical path of the ignition system, and energy transfer efficiency from the power supply to the spark gap was analyzed. Based on the results from the electrical measurement, a simplified circuit model was then employed to perform a systematic study in order to improve the performance of the inductive ignition system. At last, experiments were performed on a single cylinder research engine to study the effect of discharging characteristics on combustion process.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Book
2005-06-17
Technical Paper / Journal Article
2003-10-27
Technical Paper / Journal Article
2003-10-27
Article
2016-03-04
Article
2016-03-01
Technical Paper / Journal Article
2003-10-27