Numerical Investigation of PPCI Combustion at Low and High Charge Stratification Levels

Paper #:
  • 2017-01-0739

Published:
  • 2017-03-28
Abstract:
Partially premixed compression ignition combustion is one of the low temperature combustion techniques which is being actively investigated. This approach provides a significant reduction of both soot and NOx emissions. Comparing to the homogeneous charge compression ignition mode, PPCI combustion provides better control on ignition timing and noise reduction through air- fuel mixture stratification which lowers heat release rate com- pared to other advanced combustion modes. In this work, CFD simulations were conducted for a low and a high air-fuel mix- ture stratification cases on a light-duty optical engine operating in PPCI mode. Such conditions for PRF70 as fuel were experimen- tally achieved by injection timing and spray targeting at similar thermodynamic conditions. After validating the computed results of cylinder pressure, apparent heat release rate, and OH ∗ spa- tial distributions, differences in engine thermal load and mixture fraction distributions at first stage and second stage ignition were compared. Assuming similar second stage ignition timing which is provided by intake air heating, experimental and simulation re- sults reveal that the time between first and second stage ignition shortens and combustion phases to the main stage ignition faster in the high stratification case. Using flame structure diagrams, this was attributed to availability of a larger range of mixture frac- tions with higher reactivity. Creating optimum air-fuel stratifica- tion then can be considered as a useful and additional controlling parameter for a PPCI engine combustion phasing and subsequent emission formation.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2009-12-15
Training / Education
2017-08-16
Article
2016-02-02
Article
2016-02-02