A chemical and morphological study of diesel injector nozzle deposits - insights into their formation and growth mechanisms

Paper #:
  • 2017-01-0798

Published:
  • 2017-03-28
Abstract:
Modern diesel passenger car technology continues to develop rapidly in response to demanding emissions, performance, refinement, cost and fuel efficiency requirements. This has included the implementation of high pressure common rail fuel systems employing high precision injectors with complex injection strategies, higher hydraulic efficiency injector nozzles and in some cases <100µm nozzle hole diameters. With the trend towards lower diameter diesel injector nozzle holes and reduced cleaning through cavitation with higher hydraulic efficiency nozzles, it is increasingly important to focus on understanding the mechanism of diesel injector nozzle deposits formation and growth. In this study such deposits were analysed by cross sectioning the diesel injector along the length of the nozzle hole enabling in-depth analysis of deposit morphology and composition change from the inlet to the outlet, using state-of-the-art electron microscopy techniques. Deposits produced in the injector nozzles of the industry standard fouling test (CEC F-98-08 DW10B bench engine) were compared with those formed in a vehicle driven on a chassis dynamometer, to a drive cycle more representative of real wold vehicle conditions, to explore the effects of differing drive cycles and engine technologies. This in-depth characterisation revealed a complex multi-layered system of deposits inside the diesel injector nozzle. Through analysing these layers the mechanisms enabling the initial deposit formation and growth can be postulated.
Also in:
  • SAE International Journal of Fuels and Lubricants - V126-4
  • SAE International Journal of Fuels and Lubricants - V126-4EJ
Sector:
Topic:
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
2004-07-28
Standard
2011-10-27
Standard
2011-12-20
Training / Education
1999-09-27
Article
2016-03-04
Article
2016-03-04
Technical Paper / Journal Article
2004-06-08
Standard
2007-07-09