Influence of Engine-like Conditions on Macroscopic as well as Microscopic Spray Behavior of GDI injector using Isooctane and Alcohols

Paper #:
  • 2017-01-0855

Published:
  • 2017-03-28
Abstract:
Use of bio fuels in a regular spark ignition engine is becoming common in many countries to reduce the overall green house emissions. Alcohols such as methanol and ethanol are blended with gasoline when SI engines are considered. Advanced direct injection stratified charge engine technology has gained lot of interest due to its merits over conventional port fuel injection engine. Since the technology is significantly spray controlled, fuel injection and spray behavior under different thermodynamic conditions plays a very important role in successful engine operation. Present work was carried out to understand the spray behavior of isooctane and three alcohols under engine-like pressure and temperature conditions. Selected alcohols were ethanol, iso-butanol and n-butanol. Six holes solenoid injector was used for this study.Experiments were conducted in high pressure and temperature spray chamber to determine the liquid penetration length and overall sauter mean diameter (SMD) of the different fuels under engine relevant conditions. Selected chamber conditions were a) 1.5 bar, 329 K, b) 2.5 bar, 371 K and c) 6 bar, 453 K. Mie scattering principle was used to determine the liquid penetration of the fuels, whereas droplet diameter information was obtained using single component Phase Doppler Particle Analyzer (PDPA). Results showed that thermo-physical properties of the fuel such as vapour/liquid equilibrium and latent heat of vaporization have significant effect on the spray characteristics. Due to its lower latent heat of evaporation, iso-octane evaporated faster and hence resulted in the shortest liquid penetration length. The penetration lengths of alcohols were higher due to their comparatively higher latent heat of evaporation. SMD data from the experiments supported this observation.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
2013-12-17
Book
2013-08-08
Article
2016-02-02
Training / Education
2017-08-16
Training / Education
2017-04-05
Book
2013-06-11
Article
2016-02-02
Technical Paper / Journal Article
2003-10-27
Training / Education
1999-09-27