Optical Methodology for Characterization of a Gasoline Direct Injection Closing Event Droplet Distribution

Paper #:
  • 2017-01-0858

Published:
  • 2017-03-28
Citation:
Schroeter, R. and Meinhart, M., "Optical Methodology for Characterization of a Gasoline Direct Injection Closing Event Droplet Distribution," SAE Technical Paper 2017-01-0858, 2017, https://doi.org/10.4271/2017-01-0858.
Pages:
11
Abstract:
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location are vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions [1]. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile [2]. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors is crucial to this task as the spray produces larger droplets during both theses phases. This paper presents the preliminary results from a novel method to characterize the closing phase of DISI injection. A Design of Experiments (DOE) was used to determine the effect of pressure, temperature, and pulse-width of the fuel spray after the closing event. Experiments determined that the primary source of controlling the droplet size and the mass post injector closing for a given injector was the temperature. This paper will outline the results of the DOE for a specific injector, and describe the method used to characterize the injector closing behavior.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-04-12
Training / Education
2009-12-15
Training / Education
2018-03-27
Training / Education
1999-09-27
Training / Education
2018-02-05