Next-Generation Low-Voltage Power Nets - Impacts of Advanced Stop/Start and Sailing Functionalities

Paper #:
  • 2017-01-0896

  • 2017-03-28
Achieving efficiency requirements and continuously decreasing CO2 limits, the spread of tasks in automotive electrical system development has clearly grown. Improvements of the power net are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual battery and dual voltage promise a significant increase of efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro hybrid technologies or a 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities. The additional engine stop phases and even the reduced driving resistance have positive impacts on the fuel consumption but lead to higher load on the electrical system and an energy deficit by reducing recuperation and charging phases. Therefore, the power net architecture and electrical energy management play an essential role with regard to safety and efficiency issues. The first step of this study is an examination of stop/start and sailing by analyzing extensive real world driving measurements of a C-segment vehicle. The sailing function decouples the engine in situations without driver torque request while the engine remains in idle. Fuel and electrical energy consumption are analyzed in detail on defined test routes with varying electrical load. Secondly, simulations are carried out to evaluate the impacts of advanced sailing functionalities. A vehicle simulation is coupled to a dedicated power net simulation and calibrated to the real world driving measurements in a hardware-in-the-loop environment. An engine off sailing algorithm is implemented and the effects on fuel consumption and electrical energy balance are evaluated under varying boundary conditions. These analyses are conducted in several dual battery and dual voltage architectures. Starting from those results, requirements for prospective automotive power nets can be derived in order to give an outlook for further opportunities and optimization potential.
Also in:
  • SAE International Journal of Fuels and Lubricants - V126-4
  • SAE International Journal of Fuels and Lubricants - V126-4EJ
SAE MOBILUS Subscriber? You may already have access.
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
Technical Paper / Journal Article
Technical Paper / Journal Article
Technical Paper / Journal Article
Training / Education