Robust, model-based urea dosing control for SCR aftertreatment systems using a cross-sensitive tailpipe NOx sensor

Paper #:
  • 2017-01-0938

Published:
  • 2017-03-28
Abstract:
This article describes a urea dosing control strategy for heavy-duty diesel aftertreatment systems based on Selective Catalytic Reduction systems. The dosing control strategy comprises of a high-bandwidth, model-based ammonia storage control system in combination with a low-bandwidth tailpipe-feedback module that adjusts the dosing quantity according to current aftertreatment conditions. This results in a control system that is robust to system disturbances such as biased NOx sensors and variations in AdBlue concentrations. The cross-sensitivity of the tailpipe NOx sensor to ammonia is handled by a novel, smart signal filter that can reliably identify the contributions of NOx and NH3 in the tailpipe sensor signal, without requiring an artificial perturbation of the dosing signal. The tailpipe feedback module compares the signal from the cross-sensitive tailpipe NOx sensor to the modeled tailpipe sensor signal to estimate the actual and modeled NOx conversion and NH3 slip. The difference between these measured and modeled quantities is used to adjust the dosing quantity to the aftertreatment system, thereby maintaining nominal performance of the aftertreatment system in the presence of disturbances. Simulation results are presented of the urea dosing control system covering a wide range of disturbances, demonstrating the robustness properties of the controlled system. The robust urea dosing control strategy was implemented on a rapid prototyping platform and tested on a state-of-the-art Euro VI engine and aftertreatment systems, confirming the expected performance and robustness properties.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-02-02
Article
2016-02-02
Training / Education
2017-04-03
Technical Paper / Journal Article
2003-10-27