Lower Cost Automotive Piston from 2124/SiC/25p Metal-Matrix Composite

Paper #:
  • 2017-01-1048

Published:
  • 2017-03-28
DOI:
  • 10.4271/2017-01-1048
Citation:
Falsafi, J., Rosochowska, M., Jadhav, P., and Tricker, D., "Lower Cost Automotive Piston from 2124/SiC/25p Metal-Matrix Composite," SAE Int. J. Engines 10(4):2017, doi:10.4271/2017-01-1048.
Pages:
9
Abstract:
Engineered materials have made a breakthrough in a quest for materials with a combination of custom-made properties to suit particular applications. One of such materials is 2124/SiC/25p, a high-quality aerospace grade aluminium alloy reinforced with ultrafine particles of silicon carbide, manufactured by a powder metallurgy route. This aluminium matrix composite offers a combination of greater fatigue strength at elevated temperatures, lower thermal expansion and greater wear resistance in comparison with conventionally used piston materials. The microscale particulate reinforcement also offers good formability and machinability. Despite the benefits, the higher manufacturing cost often limits their usage in high-volume industries such as automotive where such materials could significantly improve the engine performance. This paper presents mechanical and forging data for a lower cost processing route for metal matrix composites. Finite element modelling and analysis were used to examine forging of an automotive piston and die wear. This showed that selection of the forging route is important to maximise die life. Mechanical testing of the forged material showed a minimal reduction in fatigue properties at the piston operating temperature.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2017-10-03
Training / Education
2003-01-22
Training / Education
2011-04-12
Training / Education
2017-08-15
Training / Education
2017-08-16